

Clixon controller documentation

Clixon network controller is an open-source manager of network devices based on NETCONF and YANG.

Table of contents

	1 Overview
	1.1 Goals

	1.2 Architecture

	1.3 APIs

	2 Installation
	2.1 Packages

	2.2 Source

	2.3 Building

	2.4 Configure options

	2.5 Python install

	3 Quick start

	4 Configuration
	4.1 Example

	5 CLI
	5.1 General

	5.2 Modes

	5.3 Devices

	5.4 Syncing from devices

	5.5 Services

	5.6 Editing

	5.7 Commits

	5.8 Explicit push

	5.9 Templates

	6 YANG
	6.1 Searching

	6.2 Structure

	7 Transactions
	7.1 Device connect

	7.2 Config push

	8 Service API
	8.1 Service instance

	8.2 Device config

	8.3 Tags

	8.4 Example python

	8.5 Algorithm

	8.6 Protocol

	9 Python API
	9.1 Overview

	9.2 Overview

	9.3 Installation

	9.4 Usage

	10 Service development
	10.1 Module installation

	10.2 Modules basics

	10.3 Service attributes

	10.4 Python object tree

	10.5 Object tree API

1 Overview

Th clixon network controller is an open-source manager of network devices based on NETCONF and YANG.

The controller is based on Clixon [https://clixon-docs.readthedocs.io]. The controller is a Clixon application.

1.1 Goals

The Clixon network controller aims at providing a simple
network controller for NETCONF devices of different vendors, not only Clixon.

Further goals are:

	Programmable network services, with a Python API

	Multiple devices, with different YANG schemas using RFC 8528: YANG Schema Mount [http://www.rfc-editor.org/rfc/rfc8528.txt] .

	Transactions with validate/commit/revert across groups of devices

	Scaling up to 100 devices.

1.2 Architecture

[image: _images/controller.jpg]
The controller is built on the base of the CLIgen/Clixon [https://clicon.org] system, where
the controller semantics is implemented using plugins. The backend
is the core of the system controlling the datastores and accessing the
YANG models.

1.3 APIs

The southbound API uses only NETCONF over SSH to network
devices. There are no current plans to support other protocols for
device control.

The northbound APIs are YANG-derived Restconf, Autocli, Netconf, and
Snmp. The controller CLI has two modes: operation and configure, with
an autocli configure mode derived from YANG.

A PyAPI module accesses configuration data via the actions API. The
PyAPI module reads services configuration and writes device data. The
backend then pushes changes to the actual devices using a transaction
mechanism.

2 Installation

2.1 Packages

Some packages are required. The following are example of debian-based packages:

sudo apt install flex bison git make gcc libnghttp2-dev libssl-dev

2.2 Source

Check out the following GIT repos:

	https://github.com/clicon/cligen.git/

	https://github.com/clicon/clixon.git/

	https://github.com/clicon/clixon-controller.git/

	https://github.com/clicon/clixon-pyapi.git/

2.3 Building

The source is built as follows.

2.3.1 Cligen

cd cligen
./configure
make
sudo make install

2.3.2 Clixon

cd clixon
./configure
make
sudo make install

2.3.3 Python API

Build and install the package
cd clixon-pyapi
sudo -u clicon pip3 install -r requirements.txt
sudo python3 setup.py install

2.3.4 Controller

cd clixon-controller
./configure
make
sudo make install

2.4 Configure options

The Controller configure script (generated by autoconf) includes several options apart from the standard ones.

	These include (standard options are omitted)
	
	--enable-debug

	Build with debug symbols, default: no

	--with-cligen=dir

	Use CLIGEN here

	--with-clixon=dir

	Use Clixon here

	--with-yang-installdir=DIR

	Install Yang files here (default: ${prefix}/share/clixon/controller)

	--with-clicon-user=user

	Run as this user in example and test

	--with-clicon-group=group

	Run as this group in example and test

2.5 Python install

Install the python code by copy:

sudo cp clixon_server.py /usr/local/bin/

Add a new clicon user and install the needed Python packages,
the backend will start the Python server and drop the privileges
to this user:

sudo useradd -g clicon -m clicon

3 Quick start

Start example devices as containers:

cd test
./start-devices.sh
sudo ./copy-keys.sh

Start controller:

sudo clixon_backend -f /usr/local/etc/controller.xml

Start the CLI and configure devices:

clixon_cli -f /usr/local/etc/controller.xml -m configure
set devices device clixon-example1 description "Clixon container"
set devices device clixon-example1 conn-type NETCONF_SSH
set devices device clixon-example1 addr 172.20.20.2
set devices device clixon-example1 user root
set devices device clixon-example1 enable true
set devices device clixon-example1 yang-config VALIDATE
set devices device clixon-example1 root
commit local

Thereafter explicitly connect to the devices:

clixon_cli -f /usr/local/etc/controller.xml
connection open

4 Configuration

The controller extends the clixon configuration file as follows:

	CLICON_CONFIG_EXTEND
	The value should be clixon-controller-config making the controller-specific

	CONTROLLER_ACTION_COMMAND
	Should be set to the PyAPI binary with correct arguments
The namespace is =”http://clicon.org/controller-config”

	CLICON_BACKEND_USER
	Set to the user which the action binary (above) is used. Normally clicon

	CLICON_SOCK_GROUP
	Set to user group, ususally clicon

	CONTROLLER_YANG_SCHEMA_MOUNT_DIR
	Directory where device YANGs are stored locally. Both for RFC 6022 get-schema retrieval as well as local module-set YANGs.

	CONTROLLER_PYAPI_MODULE_PATH
	Path to Python code for PyAPI

CONTROLLER_PYAPI_MODULE_FILTER

CONTROLLER_PYAPI_PIDFILE

4.1 Example

The following configuration file examplifies the configure options described above:

<clixon-config xmlns="http://clicon.org/config">
<CLICON_CONFIGFILE>/usr/local/etc/controller.xml</CLICON_CONFIGFILE>
<CLICON_FEATURE>ietf-netconf:startup</CLICON_FEATURE>
<CLICON_FEATURE>clixon-restconf:allow-auth-none</CLICON_FEATURE>
<CLICON_CONFIG_EXTEND>clixon-controller-config</CLICON_CONFIG_EXTEND>
<CONTROLLER_ACTION_COMMAND xmlns="http://clicon.org/controller-config">
 /usr/local/bin/clixon_server.py -f /usr/local/etc/controller.xml -F
</CONTROLLER_ACTION_COMMAND>
<CONTROLLER_PYAPI_MODULE_PATH xmlns="http://clicon.org/controller-config">
 /usr/local/share/clixon/controller/modules/
</CONTROLLER_PYAPI_MODULE_PATH>
<CONTROLLER_PYAPI_MODULE_FILTER xmlns="http://clicon.org/controller-config"></CONTROLLER_PYAPI_MODULE_FILTER>
<CONTROLLER_PYAPI_PIDFILE xmlns="http://clicon.org/controller-config">
 /tmp/clixon_server.pid
</CONTROLLER_PYAPI_PIDFILE>
<CLICON_BACKEND_USER>clicon</CLICON_BACKEND_USER>
<CLICON_SOCK_GROUP>clicon</CLICON_SOCK_GROUP>

5 CLI

This section desribes the CLI commands of the Clixon controller. A simple example is used to illustrate concepts.

5.1 General

5.1.1 Version

You can show the version either with the -V command-line option or with the CLI show version command:

> clixon_cli -V
Clixon version: 6.6.0
CLIgen: 6.6.0
Controller: 1.0.0
Controller GIT: 40290c0
Controller bld: 2024.02.15 13:19 by clixon on paradise

5.2 Modes

The CLI has two modes: operational and configure. The top-levels are as follows:

> clixon_cli
cli> ?
 configure Change to configure mode
 connection Change connection state of one or several devices
 debug Debugging parts of the system
 exit Quit
 processes Process maintenance
 pull Pull config from one or multiple devices
 push Push config to one or multiple devices
 quit Quit
 save Save running configuration to XML file
 shell System command
 show Show a particular state of the system
 transaction Controller transaction

cli> configure
cli[/]# set ?
 devices Device configuration
 processes Processes configuration
 services Placeholder for services
cli[/]#

5.3 Devices

Device configuration is separated into two domains:

	Local information about how to access the device (meta-data)

	Remote device configuration pulled from the device.

The user must be aware of this distinction when performing commit operations.

5.3.1 Local device configuration

The local device configuration contains information about how to access the device:

device clixon-example1 {
 description "Clixon example container";
 enabled true;
 conn-type NETCONF_SSH;
 user admin;
 addr 172.17.0.3;
 yang-config VALIDATE;
}

A user makes a local commit and thereafter explicitly connects to a locally configured device:

commit local
exit
> connection open

5.3.2 Device profile

You can configure a device profile that applies to severaldevices. This is useful when configuring
devices of a specific vendor.

Example:

device-profile myprofile {
 description "Clixon example container";
 conn-type NETCONF_SSH;
 user admin;
 yang-config VALIDATE;
 module-set {
 module openconfig-interfaces {
 namespace http://openconfig.net/yang/interfaces;
 }
 }
}
device clixon-example1 {
 device-profile myprofile;
 addr 172.17.0.3;
 enabled true;
}
device clixon-example2 {
 device-profile myprofile;
 addr 172.17.0.4;
 enabled true;
}

In the example, the myprofile device-profile defines a set of common fields, including the locally loaded openconfig YANG. See Section YANG for more information on loading device YANGs.

5.3.3 Remote device configuration

The remote device configuration is present under the config mount-point:

device clixon-example1 {
 ...
 config {
 interfaces {
 interface eth0 {
 mtu 1500;
 }
 }
 }
}

The remote device configuration is bound to device-specific YANG models downloaded
from the device at connection time.

5.3.4 Device naming

The local device name is used for local selection:

device example1

Wild-cards (globbing) can be used to select multiple devices:

device example*

Further, device-groups can be configured and accessed as a single entity:

device-group all-examples

Note

Device groups can be statically configured but not used in most operations

In the forthcoming sections, selecting <devices> means any of the methods described here.

5.3.5 Device state

Examine device connection state using the show command:

cli> show devices
Name State Time Logmsg
===
example1 OPEN 2023-04-14T07:02:07
example2 CLOSED 2023-04-14T07:08:06 Remote socket endpoint closed

There is also a detailed variant of the command with more information in XML:

olof@zoomie> show devices detail
<devices xmlns="http://clicon.org/controller">
 <device>
 <name>example1</name>
 <description>Example container</description>
 <enabled>true</enabled>
 ...

5.3.6 (Re)connecting

When adding and enabling one a new device (or several), the user needs to explicitly connect:

cli> connection <devices> connect

The “connection” command can also be used to close, open or reconnect devices:

cli> connection <devices> reconnect

5.4 Syncing from devices

5.4.1 pull

Pull fetches the configuration from remote devices and replaces any existing device config:

cli> pull <devices>

The synced configuration is saved in the controller and can be used for diffs etc.

5.4.2 pull merge

cli> pull <devices> merge

This command fetches the remote device configuration and merges with the
local device configuration. use this command with care.

5.5 Services

Network services are used to generate device configs.

5.5.1 Service process

To run services, the PyAPI service process must be enabled:

cli# set services enabled true
cli# commit local

To view or change the status of the service daemon:

cli> service process ?
 restart
 start
 status
 stop

5.5.2 Example

An example service could be:

cli> set service test 1 e* 1400

which adds MTU 1400 to all interfaces in the device config:

interfaces {
 interface eth0{
 mtu 1400;
 }
 interface enp0s3{
 mtu 1400;
 }
}

Service scripts are written in Python using the PyAPI, and are triggered by commit commands.

You can also trigger service scripts as follows:

cli# apply services
cli# apply services testA foo
cli# apply services testA foo diff

In the first variant, all services are applied. In the second variant, only a specific service is triggered.

5.5.3 Created objects

The system keeps track of which device objects are created, so that they can be be removed when the service is removed. A service tags device objects with a creator attribute which results in a set of created configure objects in the controller.

The list created objects can be viewed as part of the regular configuration:

cli> show configuration services ssh-users test1 created
<services xmlns="http://clicon.org/controller">
 <ssh-users xmlns="urn:example:test">
 <name>test1</name>
 <created>
 <path>/devices/device[name="openconfig1"]/config/system/aaa/authentication/users/user[username="test1"]</path>
 <path>/devices/device[name="openconfig2"]/config/system/aaa/authentication/users/user[username="test1"]</path>
 </created>
 </ssh-users>
</services>

Debugging

If you enable debugging (-D app), an entry is logged to the syslog each time the created objects change:

Jan 22 11:24:35 totila clixon_backend[212183]: controller_edit_config:2728: Objects created in actions-db: <services xmlns="http://clicon.org/controller" xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"><ssh-users xmlns="urn:example:test"><name>test1</name><created nc:operation="merge"><path>/devices/device[name="openconfig1"]/config/system/aaa/authentication/users/user[username="test1"]</path><path>/devices/device[name="openconfig2"]/config/system/aaa/authentication/users/user[username="test1"]</path></created></ssh-users></services>

5.6 Editing

Editing can be made by modifying services:

cli# set services test 2 eth* 1500

Editing changes the controller candidate, changes can be viewed with:

cli# show compare
 services {
+ test 2 {
+ name eth*;
+ mtu 1500;
+ }
 }

5.6.1 Editing devices

Device configurations can also be directly edited:

cli# set devices device example1 config interfaces interface eth0 mtu 1500

Show and editing commands can be made on multiple devices at once using “glob” patterns:

cli> show config xml devices device example* config interfaces interface eth0
example1:
<interface>
 <name>eth0</name>
 <mtu>1500</mtu>
</interface>
example2:
<interface>
 <name>eth0</name>
 <mtu>1500</mtu>
</interface>

Modifications using set, merge and delete can also be applied on multiple devices:

cli# set devices device example* config interfaces interface eth0 mtu 9600
cli#

5.7 Commits

This section describes remote commit, i.e., commit operations that have to do with modifying remote device configuration. See Section devices for how to make local commits for setting up device connections.

5.7.1 commit diff

Assuming a service has changed as shown in the previous secion, the
commit diff command shows the result of running the service
scripts modifying the device configs, but with no commits actually done:

cli# commit diff
 services {
+ test 2 {
+ name eth*;
+ add 1500;
+ }
 }
 devices {
 device example1 {
 config {
 interfaces {
 interface eth0 {
- mtu 1400;
+ mtu 1500;
 }
 }
 }
 }
 device example33 {
 config {
 interfaces {
 interface eth3 {
- mtu 1400;
+ mtu 1500;
 }
 }
 }
 }
 }

5.7.2 Commit push

The changes can now be pushed and committed to the devices:

cli# commit push

If there are no services, changes will be pushed and committed without invoking any service handlers.

If the commit fails for any reason, the error is printed and the changes remain as prior to the commit call:

cli# commit push
Failed: device example1 validation failed
Failed: device example2 out-of-sync

A non-recoverable error that requires manual intervention is shown as:

cli# commit push
Non-recoverable error: device example2: remote peer disconnected

To validate the configuration on the remote devices, use the following command:

cli# validate push

If you want to rollback the current edits, use discard:

cli# discard

One can also choose to not push the changes to the remote devices:

cli# commit local

This is useful for setting up device connections. If a local commit is performed for remote device config, you need to make an explicit push as described in Section Explicit push.

5.7.3 Limitations

The following combinations result in an error when making a remote commit:

	No devices are present. However, it is allowed if no remote validate/commit is made. You may want to dryrun service python code for example even if no devices are present.

	Local device fields are changed. These may potentially effect the device connection and should be made using regular netconf local commit followed by rpc connection-change, as described in Section devices.

	One of the devices is not in an OPEN state. Also in this case is it allowed if no remote valicate/commit is made, which means you can do local operations (like commit diff) even when devices are down.

Further, avoid doing BOTH local and remote edits simultaneously. The system detects local edits (according to (2) above) but if one instead uses local commit, the remote edits need to be explicitly pushed

Compare and check
===============–
The “show compare” command shows the difference between candidate and running, ie not committed changes.
A variant is the following that compares with the actual remote config:

cli> show devices <devices> diff

This is acheived by making a “transient” pull that does not replace the local device config.

Further, the following command checks whether devices are is out-of-sync:

cli> show devices <devices> check
Failed: device example2 is out-of-sync

Out-of-sync means that a change in the remote device config has been made, such as a manual edit, since the last “pull”.
You can resolve an out-of-sync state with the “pull” command.

5.8 Explicit push

There are also explicit sync commands that are implicitly made in
commit push. Explicit pushes may be necessary if local commits are
made (eg commit local) which needs an explicit push. Or if a new device has been off-line:

cli> push <devices>

Push the configuration to the devices, validate it and then revert:

cli> push <devices> validate

5.9 Templates

The controller has a simple template mechanism for applying configurations to several devices at once. The template mechanism uses variable substitution.

A limitation is that the template itself need to be entered as XML or JSON, CLI editing is not available.

Note

You need to enter the template as XML

Using of a template follows the following steps:

	Add a template using the load command and commit it

	Apply the template using variable binding on a set of devices

	Commit the change

5.9.1 Limitations

Templates are added as raw XML. The reason is that YANG-binding is not
known at the time of template creation. To know the YANG, the template
needs to be bound to some specific YANG files, or specific devices.

Since it is raw XML, there is no type-checking and any diffs (based on YANG) is limited.

Note

Template XML is not type-checked and diffs are limited

5.9.2 Example

The following example first configures a template with the formal parameters $NAME and $TYPE using the load command to paste the template config directly:

> clixon_cli -f /usr/local/etc/clixon/controller.xml -m configure
olof@totila[/]# load merge xml
<config>
 <devices xmlns="http://clicon.org/controller">
 <template nc:operation="replace">
 <name>interfaces</name>
 <variables>
 <variable>
 <name>NAME</name>
 </variable>
 <variable>
 <name>TYPE</name>
 </variable>
 </variables>
 <config>
 <interfaces xmlns="http://openconfig.net/yang/interfaces">
 <interface>
 <name>${NAME}</name>
 <config>
 <name>${NAME}</name>
 <type xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">${TYPE}</type>
 </config>
 </interface>
 </interfaces>
 </config>
 </template>
 </devices>
</config>
^D
olof@totila[/]# commit
olof@totila[/]#

Then, the template is applied: A ǹew z interface is created on all openconfig devices:

olof@totila[/]# apply template interfaces openconfig* variables NAME z TYPE ianaift:v35
olof@totila[/]# show compare
 openconfig-interfaces:interfaces {
+ interface z {
+ config {
+ name z;
+ type ianaift:v35;
+ }
+ }
 }
 openconfig-interfaces:interfaces {
+ interface z {
+ config {
+ name z;
+ type ianaift:v35;
+ }
+ }
 }
olof@totila[/]# commit
olof@totila[/]#

6 YANG

6.1 Searching

6.1.1 Uniqueness

The controller YANGs rely on uniqueness of revisions. This means that
even with schema mounts, all YANGs are part of the same search domain
wrt revisions. That is, you may not have two different YANGs haveing
the same revision.

6.1.2 Search path

Because of the uniqueness criterium, the controller uses the same search path for all YANGs. Typically the top-level search path is:

<CLICON_YANG_DIR>/usr/local/share/clixon</CLICON_YANG_DIR>

This includes all standard YANGs, clixon YANGs and controller YANGs.

Controller YANGs

The top-level of the controller-specific YANGs is typically /usr/local/share/clixon/controller.

This can be changed with configure –with-yang-installdir=DIR, see Section Installation.

	The controller YANG directory has two sub-directories with specific meanings:
	
	main. Main controller YANGs for the top-level. Note: only place YANGs here if you want them loaded to the top-level. Important: do not place device YANGs there, only controller YANGs.

	mounts. YANGs retreived from devices using RFC 6022 get-schema are written here. You can also add local cached YANGs here.

Note

Do not place device YANGs in the main directory

6.1.3 Device YANGs

	There are two mechanisms to get YANGs from devices:
	
	Dynamic RFC6022 get-schema

	Locally defined

Dynamic

RFC6022 YANG Module for NETCONF Monitoring defines a protocol for retrieving YANG schemas. Clixon implements this as a main mechanism.

This is automatically invoked if the device advertises “urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring” in the hello protocol. The state-machine mechanism for this is described in Section transactions.

Local

You can also declare a module-set which is loaded unconditionally in a device, or device-profile. In the following example, openconfig is declared as locally loaded:

<devices xmlns="http://clicon.org/controller">
 <device-profile>
 <name>myprofile</name>
 <module-set>
 <module>
 <name>openconfig-interfaces</name>
 <namespace>http://openconfig.net/yang/interfaces</namespace>
 </module>
 </module-set>
 </device-profile>
</devices>

	Note the following:
	
	The locally defined openconfig YANG will searched for using the regular YANG search mechanism (using CLICON_YANG_DIR).

	If the local YANG is not found, the (connect) transaction will fail.

	Any imports declared in a locally defined YANG will also be loaded locally recursively

	If the device also supports RFC 6022 get-schema, any further YANGs will be loaded from the device.

6.2 Structure

6.2.1 Clixon-controller

The clixon-controller YANG has the following structure:

module: clixon-controller
 +--rw processes
 | +--rw services
 | +--rw enabled boolean
 +--rw services
 | +--rw properties
 +--rw devices
 | +--rw device-timeout uint32
 | +--rw device-group* [name]
 | | +--rw name string
 | | +--rw description? string
 | | +--rw device-group* leafref
 | +--rw device-profile* [name]
 | | +--rw name string
 | | +--rw description? string
 | | +--rw user? string
 | | +--rw conn-type connection-type
 | | +--rw ssh-stricthostkey boolean
 | | +--rw yang-config? yang-config
 | +--rw device* [name]
 | +--rw name string
 | +--rw enabled? boolean
 | +--rw device-profile leafref
 | +--rw description? string
 | +--rw user? string
 | +--rw conn-type connection-type
 | +--rw ssh-stricthostkey boolean
 | +--rw yang-config? yang-config
 | +--rw device-type string
 | +--rw addr string
 | +--ro conn-state connection-state
 | +--ro conn-state-timestamp yang:date-and-time
 | +--ro capabilities
 | | +--ro capability* string
 | +--ro sync-timestamp yang:date-and-time
 | +--ro logmsg string
 | +--rw config
 +--ro transactions
 +--ro transaction* [tid]
 +--ro tid uint64
 +--ro state transaction-state
 +--ro result transaction-result
 +--ro description string
 +--ro origin string
 +--ro reason string
 +--ro warning string
 +--ro timestamp yang:date-and-time
 notifications:
 +---n services-commit
 | +--ro tid uint64
 +---n controller-transaction
 +--ro tid uint64
 rpcs:
 +--config-pull
 +--controller-commit
 +--connection-change
 +--get-device-config
 +--transaction-error
 +--transaction-actions-done
 +--datastore-diff
 +--device-template-apply

6.2.2 Service augment

The services section contains user-defined services not provided by
the controller. A user adds services definitions using YANG augment. For example:

import clixon-controller { prefix ctrl; }
augment "/ctrl:services" {
 list myservice {
 ...

6.2.3 Controller-config

The clixon-controller-config YANG extends the basic clixon-config with several fields. These have previously been described in Section configuration. The structure is as follows:

module: clixon-controller-config
 augment /cc:clixon-config
 +--rw CONTROLLER_ACTION_COMMAND
 +--rw CONTROLLER_PYAPI_MODULE_PATH
 +--rw CONTROLLER_PYAPI_MODULE_FILTER
 +--rw CONTROLLER_PYAPI_PIDFILE
 +--rw CONTROLLER_YANG_SCHEMA_MOUNT_DIR

7 Transactions

A basis of controller operation is the use of transactions. Clixon itself has underlying candidate/running datastore transactions. The controller expands the transaction concept to span multiple devices.
There are two such types of composite transactions:

	Device connect: where devices are connected via NETCONF over ssh, key exchange, YANG retrieval and config pull

	Config push: where a service is (optionally) edited, changed device config is pushed to remote devices via NETCONF.

[image: _images/transaction.jpg]

7.1 Device connect

A device connect transaction starts in state CLOSED and if succesful stops in OPEN. there are multiple intermediate steps as follows (for each device):

	An SSH session is created to the IP address of the device

	An SSH login is made which requires:

	The device to have enabled a NETCONF ssh sub-system

	The public key of the controller to be installed on the device

	The public key of the device to be in the known_hosts file of the controller

	A mutual NETCONF <hello> exchange

	Get all YANG schema identifiers from the device using the ietf-netconf-monitoring schema.

	For each YANG schema identifier, make a <get-schema> RPC call (unless already retrieved).

	Get the full configuration of the device.

7.2 Config push

While a device connect operates on individual devices, the config push transaction operates on all devices. It starts in OPEN for all devices and ends in OPEN for all devices involved in the transaction:

	The user edits a service definition and commits

	The commit triggers PyAPI services code, which rewrites the device config

	Alternatively, the user edits the device configuration manually

	The updated device config is validated by the controller

	The remote device candidate datastore is locked for exclusive access

	The remote device is checked for updates, if it is out of sync, the transaction is aborted

	The new config is pushed to the remote devices

	The new config is validated on the remote devices

	If validation succeeds on all remote devices, the new config is committed to all devices

	If validation is not successful, or only a push validate was requested, the config is reverted on all remote devices.

	The remote device candidate datastores are unlocked

After (9) above it is possible to add an extra step (compiler-option):

	The new config is retreived from the device and is installed on the controller

Use the show transaction command to get details about transactions:

cli> show transaction
 <transaction>
 <tid>2</tid>
 <state>DONE</state>
 <result>FAILED</result>
 <description>pull</description>
 <origin>example1</origin>
 <reason>validation failed</reason>
 <timestamp>2023-03-27T18:41:59.031690Z</timestamp>
 </transaction>

7.2.1 Out-of-sync

In step (5) of the push algorithm described above, the remote device is checked for
updates.

The controller employs a raw method for detecting this as follows:

	Continuosly store the most recent device config on local storage. This is the “SYNCED” configuration, typically stored at /usr/local/var/controller. This is either the most recent pull, or most recent push.

	Get the complete configuration from the device as part of the transaction. This is the TRANSIENT configuration.

	Compare the SYNCED and TRANSIENT configurations. If they differ, the device configuration has changed and the transaction is aborted.

A failed comparison is an indication that the device configuration has
changed, and that therefore the push is unsafe since it may overwrite
configuration entered by another party, such as a manual configuration of the device.

However, some devices rewrite fields automatically. Particularly in
the case of a push, some devices themselves rewrite fields. Examples
include encrypted or generated fdata, such as certs, keys, passwords
or other data which for some reason are transformed at the time of the
(push) commit.

Therefore, these fields cannot be used as a basis for equivalence and
needs to be ignored in the out-of-sync comparison.

As a side note, an improved method than the raw algorithm described would be preferred,
such as the device itself computing a hash value of its existing
configuration.

7.2.2 Ignoring fields

The controller has a mechanism for ignoring device YANG fields by
using a local file that augments the device YANG with an “ignore” extension.

For example, assume a “passwd” field should be ignored in a device YANG. First, add or extend a local YANG file:

module myext {
 ...
 namespace ""urn:example:ext";
 import device-yang {
 prefix dy;
 }
 import clixon-lib {
 prefix cl;
 }
 augment "/dy:configuration/dy:system/dy:passwd" {
 cl:ignore-compare;
 }

where the clixon-lib “ignore-compare” extension augments the passwd field in the original device YANG.

Then add it to a device or device-profile configuration:

device-profile my-device {
 ...
 module-set {
 module myext {
 namespace ""urn:example:ext";
 }
 }
 ...
}

When the device YANG is loaded, it will be augmented with the ignore extension, which the controller will use in its comparison algorithm.

8 Service API

The controller provides an service API which is a YANG-defined protocol for external action handlers, including the PyAPI.

The backend implements a tagging mechanism to keep track of what parts
of the configuration tree were created by which services. In this
way, reference counts are maintained so that objects can be removed in
a correct way if multiple services create the same object.

There are some restrictions on the current service API:

	Only a single action handler is supported, which means that a single action handler handles all services.

	The algorithm is not hierarchical, that is, if there is a tag on a device object, tags on children are not considered

	No persistence: if the backend is restarted, tags are lost.

8.1 Service instance

A service extends the controller yang as described in the YANG section [https://clixon-docs.readthedocs.io/en/latest/yang.html] section. For example, a service ssh-users may augment the original as follows:

augment "/ctrl:services" {
 list ssh-users { // YANG list
 key group; // Single key
 leaf group {
 type string;
 }
 list username {
 key name;
 leaf name{
 type string;
 }
 leaf ssh-key {
 type string;
 }
 }
 }
}

The service must be on the following form:

	The top-level is a YANG list (eg ssh-users above)

	The list has a single key (eg group above)

The rest of the augmented service can have any form (eg list username above).

Note

An augmented service must start with a YANG list with a single key

An example service XML for ssh-users is:

<services xmlns="http://clicon.org/controller">
 <ssh-users xmlns="urn:example:test">
 <group>ops</group>
 <username>
 <name>eric</name>
 <ssh-key>ssh-rsa AAA...</ssh-key>
 </username>
 <username>
 <name>alice</name>
 <ssh-key>ssh-rsa AAA...</ssh-key>
 </username>
 </ssh-users>
 <ssh-users xmlns="urn:example:test">
 <group>devs</group>
 <username>
 <name>kim</name>
 <ssh-key>ssh-rsa AAA...</ssh-key>
 </username>
 <username>
 <name>alice</name>
 <ssh-key>ssh-rsa AAA...</ssh-key>
 </username>
 </ssh-users>
</services>

The service protocol defines a service instances as:

<list> | <list>[<key>='<value>']

From the example YANG above, examples of service instances of ssh-users are:

ssh-users
ssh-users[group='ops']
ssh-users[group='devs']

where the first identifies all ssh-users instances and the other two
identifies the specific instances given above

8.2 Device config

The service definition is input to changing the device config, where the actual change is made by
Python code in the PyAPI.

A device configuration could be as follows (inspired by openconfig):

container users {
 description "Enclosing container list of local users";
 list user {
 key "username";
 description "List of local users on the system";
 leaf username {
 type string;
 description "Assigned username for this user";
 }
 leaf ssh-key {
 type string;
 description "SSH public key for the user (RSA or DSA)";
 }
 }
}

8.3 Tags

An action handler tags device configuration objects it creates with the name of the service instances
using the cl:creator YANG extension. This is used to track which instance created
an object and acts as a reference count when removing objects. An object may have several tags if it is created by more than one service instance.

In the following example, three device objects are tagged with service instances in one device, as follows:

Device A with service-instance tags

	Device object

	Service-instance

	eric

	ssh-users[group=’ops’]

	alice

	ssh-users[group=’devs’]

	kim

	ssh-users[group=’ops’],
ssh-users[group=’devs’]

where device objects eric and alice are created by service instance ops (more precisely ssh-users[group=’ops’]) and devs respectively, and kim is created by both.

Suppose that service instance ops is deleted, then all device objects tagged with ops are deleted:

Device A after removal of ops

	Device object

	Service-instance

	alice

	ssh-users[group=’devs’]

	kim

	ssh-users[group=’devs’]

Note that kim still remains since it was created by both ops and devs.

Note also that this example only considers a single device A. In reality there are many more devices.

8.4 Example python

An example PyAPI script takes the service ssh-users definition and creates users on the actual devices, for example:

for instance in root.services.users:
 for user in instance.username:
 username = ssh-users.name.cdata
 ssh_key = ssh-users.ssh_key.cdata
 for device in root.devices.device:
 new_user = Element("user",
 attributes={
 "cl:creator": "users[group='ops']",
 "nc:operation": "merge",
 "xmlns:cl": "http://clicon.org/lib"})
 new_user.create("name", cdata=username)
 new_user.create("authentication")
 new_user.authentication.create("ssh-rsa")
 new_user.authentication.ssh_rsa.create("name", cdata=ssh_key)
 device.config.configuration.system.login.add(new_user)

8.5 Algorithm

The algorithm for managing device objects using tags is as follows. Consider a commit operation where some services have changed by adding, deleting or modifying service -instances:

	The controller makes a diff of the candidate and running datastore and identifies all changed services-instances

	For all changed service-instances S:

	For all device nodes D tagged with that service-instance tag:

	If S is the only tag, delete D

	Otherwise, delete the tag, but keep D

	The controller sends a notification to the PYAPI including a list of modified service-instances S

	The PyAPI creates device objects based on the service instances S, merges with the datastore and commits

	The controller makes a diff between the modified datastore and running and pushes to the devices

The algorithm is stateless in the sense that the PyAPI recreates all
objects of the modified service-instances. If a device object is not
created, it is considered as deleted by the controller. Keeping track
of deleted or changed service-instances is done only by the
controller.

8.6 Protocol

The following diagram shows an overview of the action protocol:

Backend Action handler
 | |
 + <--- <create-subscription> --- +
 | |
 + --- <services-commit> ---> +
 | |
 + <--- <edit-config> --- +
 | ... |
 + <--- <edit-config> --- +
 | |
 + <--- <trans-actions-done> --- +
 | |
 | (wait) |
 + --- <services-commit> ---> +
 | ... |

where each message will be described in the following text.

8.6.1 Registration

An action handler registers subscriptions of service commits by using RFC 5277
notification streams:

<create-subscription>
 <stream>service-commit</stream>
</create-subscription>

8.6.2 Notification

Thereafter, controller notifications of type service-commit are sent
from the backend to the action handler every time a
controller-commit RPC is initiated with an action component. This
is typically done when CLI commands commit push, commit diff and
others are made.

An example of a service-commit notification is the following:

<services-commit>
 <tid>42</tid>
 <source>candidate</source>
 <target>actions</target>
 <service>ssh-users[group='ops']</service>
 <service>ssh-users[group='devs']</service>
</services-commit>

In the example above, the transaction-id is 42 and the services definitions are read from
the candidate datastore. Updated device edits are written to the actions datastore.

The notification also informs the action server that two service instances have changed.

A special case is if no service-instance entries are present. If so, it means
all services in the configuration should be re-applied.

8.6.3 Editing

In the following example, the PyAPI adds an object in the device configuration tagged with the service instance ssh-users[group=’ops’]:

<edit-config>
 <target><actions xmlns="http://clicon.org/controller"/></target>
 <config>
 <devices xmlns="http://clicon.org/controller">
 <device>
 <name>A</name>
 <config>
 <users xmlns="urn:example:users" xmlns:cl="http://clicon.org/lib" nc:operation="merge">
 <user cl:creator="ssh-users[group='ops']">
 <username>alice</username>>
 <ssh-key>ssh-rsa AAA...</ssh-key>
 </user>
 </users>
 </config>
 </device>
 </devices>
 </config>
</edit-config>

Note that the action handler needs to make a get-config to read the
service definition. Further, there is no information about what
changes to the services have been made. The idea is that the action
handler reapplies a changed service and the backend sorts out any
deletions using the tagging mechanism.

8.6.4 Finishing

When all modifications are done, the action handler issues a transaction-actions-done message to the backend:

<transaction-actions-done xmlns="http://clicon.org/controller">
 <tid>42</tid>
</transaction-actions-done>

After the done message has been sent, no further edits are made by
the action handler, it waits for the next notification.

The backend, in turn, pushes the edits to the devices, or just shows
the diff, or validates, depending on the original request parameters.

8.6.5 Error

The action handler can also issue an error to abort the transaction. For example:

<transaction-error>
 <tid>42</tid>
 <origin>pyapi</origin>
 <reason>No connection to external server</reason>
</transaction-error>

In this case, the backend terminates the transaction and signals an error to the originator, such as a CLI user.

Another source of error is if the backend does not receive a done
message. In this case it will eventually timeout and also signal an error.

9 Python API

This section documents the Clixon Python API.
The Python API is a stand-alone client which uses the internal Netconf protocol to the Clixon backend.
The primary application is the clixon-server and its network services.

9.1 Overview

The Clixon Python API consist of two parts:

	The server (clixon_server.py).

	Service modules.

The server listens for events from the Clixon backend and run the
modules when needed. All service logic are implemented in the modules
and are described in detail below.

9.2 Overview

The Python API connect to Clixons internal socket and communicate over
NETCONF. When started it registers for notifications of service commits
and controller transactions.

Whenever a commit occurs, the Clixon Controller issues a notification the Python API listens to.

When the Python API receives a service commit it runs all the service
modules which manipulates the configuration tree. When finished, the
configuration is sent back to the Clixon backend.

In summary:
1. The user configures a service from the CLI.
2. The user commits the service.
3. Pyapi receives a <services-commit> notification.
4. Pyapi executes all service modules that may modify the configuration (device) tree.
5. For each modification, an <edit-config> message is sent to the backend.
6. When completed, pyapi sends <transaction-actions-done> to the backend.
7. If pyapi encounters an error, it aborts by sending <transaction-error> to the backend instead.
8. The new configuration is pushed to the devices by the backend.

9.3 Installation

9.3.1 Prerequisites

Installation of Cligen and Clixon is not covered in this section. The
Clixon controller must be up and running before the Python API can be
used.

It is expected that Python, Pip etc are installed on the system.

9.3.2 Installation

Python API is available on GitHub:

$ git clone https://github.com/clicon/clixon-pyapi.git

Once cloned, the requirementes are installed:

$ cd clixon-pyapi
$ pip3 install -r requirements.txt

And then the Clixon pyapi library is installed:

$ sudo python3 setup.py install

The server is installed manually, for example:

$ sudo cp clixon_server.py /usr/local/bin/

The install script install.sh performs the two steps above.

9.4 Usage

9.4.1 Command line options

The Python API server has the following command line options:

$ python3 clixon_server.py -h

 clixon_server.py -f<module1,module2> -s<path> -d -p<pidfile>
 -f Clixon controller configuration file
 -m Modules path
 -e Comma separate list of modules to exclude
 -d Enable verbose debug logging
 -s Clixon socket path
 -p Pidfile for Python server
 -F Run in foreground
 -P Prettyprint XML
 -l <s|o> Log on (s)yslog, std(o)ut
 -h This!

9.4.2 Logging and debugging

The server can be run in the foreground with debug flags:

clixon_server.py -F -d -P -f /usr/local/etc/controller.xml

9.4.3 Startup

Pyapi needs to know where the python code for the service model is located.
This can be modified with the ‘-m’ flag:

python3 ./clixon_server.py -f /usr/local/etc/controller.xml

which makes the server run in the background with minimal logging.

10 Service development

Service modules contains the actual code and logic which is used when
modifying the configuration three for services.

The Python server looks for modules in the directory /usr/local/clixcon/controller/modules unless anything else is defined) and when a module is launched by the Python
server the server call the setup method.

A minimal service module may look like this:

from clixon.clixon import rpc

SERVICE = "example"

@rpc()
def setup(root, log, **kwargs):
 log.info("I am a module")

10.1 Module installation

Clixon controller installs a utility named “clixon_controller_packages.sh”
in “/usr/local/bin”. This can be used to install packages.

$ clixon_controller_packages.sh -h
Usage: /usr/local/bin/clixon_controller_packages.sh [OPTIONS]
 -s Source path
 -m Clixon controller modules install path
 -y Clixon controller YANG install path
 -r Use with care: Reset Clixon controller modules and YANG paths
 -h help

The script copies Python code and module YANG files
to the correct directories and take care of permissions etc.

The normal use case is to run the “clixon_controller_packages.sh” without
the -m and -y arguments, the script installs modules and YANG
in the default paths which is preferred.

10.2 Modules basics

The setup method take three parameters, root, log and kwargs.

	Root is the configuration three.

	Log is used for logging and is a reference to a Python logging object. The log parameter can be used to print log messages. If the server is running in the foreground the log messages can be seen in the terminal, otherwise they will be written to syslog.

	kwargs is a dict of optional arguments. kwargs can contain the argument “instance” which is the name of the current service instance that is being changed by the user.

There is also a variable named “SERVICE” that should have the same name as the
service without revision.

from clixon.clixon import rpc

SERVICE = "example"

@rpc()
def setup(root, log, **kwargs):
 log.info("Informative log")
 log.error("Error log")
 log.debug("Debug log")

The root parameter is the configuration three received from the Clixon
backend.

Contents of the root parameter can be written in XML format by using the dumps() method:

from clixon.clixon import rpc

SERVICE = "example"

@rpc()
def setup(root, log, **kwargs):
 log.debug(root.dumps())

10.3 Service attributes

When creating new nodes related to services it is important to append the proper
attributes to the new node. The Clixon backend will keep track of which nodes
belongs to which service using the attribute cl:creator where the value of
cl:create is the service name.

Example:

from clixon.clixon import rpc

SERVICE = "example"

@rpc()
def setup(root, log, **kwargs):
 device.config.configuration.system.create("test", cdata="foo",
 attributes={"cl:creator": "test-service"})

10.4 Python object tree

Manipulating the configuration tree is the central part of the
service modules. For example, a service could be defined with the only
purpose to change the hostname on devices.

In the Juniper CLI one would do something similar to this to configure
the hostname:

admin@junos> configure
Entering configuration mode

[edit]
admin@junos# set system host-name foo-bar-baz

[edit]
admin@junos# commit
commit complete

However, in the Clixon CLI this behaviour can be modelled
by using a service YANG models. For example, altering the
hostname for a lot of devices could look as follows:

test@test> configure
test@test[/]# set services hostname test hostname foo-bar-baz
test@test[/]# commit

Clixon itself can not modify the configuration when the commit is
issued, but this must be implemented using a service module.

from clixon.clixon import rpc

SERVICE = "example"

@rpc()
def setup(root, log, **kwargs):
 hostname = root.services.hostname.hostname

 for device in root.devices:
 device.config.configuration.system.host_name

When the service module above is executed Clixon automatically calls
the setup method. The wrapper “rpc” takes care of fetching the
configuration tree from Clixon and write the modified configuration
back when the setup function returns.

The “root” object is modified and passed as a parameter to setup. It
is parsed by the Python API and converted to a tree of Python objects.

One can also create new configurations. For example, the same example can be modified to
create a new node named test:

from clixon.clixon import rpc

SERVICE = "example"

@rpc()
def setup(root, log, **kwargs):
 device.config.configuration.system.create("test", cdata="foo")

The code above would translate to an NETCONF/XML string which looks like this:

<device>
 <config>
 <configuration>
 <system>
 <test>
 foo
 </test>
 </system>
 </configuration>
 </config>
</device>

10.5 Object tree API

Clixon Python API contains a few methods to work with the
configuration three.

10.5.1 Parsing

The most fundamental method is parse_string from parse.py, this method
take any XML string and convert it to a tree of Python objects:

>>> from clixon.parser import parse_string
>>>
>>> xmlstr = "<xml><tags><tag>foo</tag></tags></xml>"
>>> root = parse_string(xmlstr)
>>> root.xml.tags.tag
foo
>>>

As seen in the example above an object (root) is returned from
parse_string, root is a representation of the XML string xmlstr.

Something worth noting is that XML tags with ‘-’ in them must be
renamed. A tag named “foo-bar” will have the name “foo_bar” after
being parsed since Python don’t allow ‘-’ in object names.

The original name is saved and when the object tree is converted back
to XML the original name is be present:

>>> xmlstr = "<xml><tags><foo-bar>foo</foo-bar></tags></xml>"
>>> root = parse_string(xmlstr)
>>> root.xml.tags.foo_bar
foo
>>> root.dumps()
'<xml><tags><foo-bar>foo</foo-bar></tags></xml>'
>>>

10.5.2 Creation

It is also possible to create the tree manually:

>>> from clixon.element import Element
>>>
>>> root = Element("root")
>>> root.create("xml")
>>> root.xml.create("tags")
>>> root.xml.tags.create("foo-bar", cdata="foo")
>>> root.dumps()
'<xml><tags><foo-bar>foo</foo-bar></tags></xml>'
>>>

10.5.3 Attributes

For any object it is possible to add attributes:

>>> root.xml.attributes = {"foo": "bar"}
>>> root.dumps()
'<xml foo="bar"><tags><foo-bar>foo</foo-bar></tags></xml>'
>>> root.xml.attributes["baz"] = "baz"
>>> root.dumps()
'<xml foo="bar" baz="baz"><tags><foo-bar>foo</foo-bar></tags></xml>'
>>>

The Python API is not aware of namespaces etc but the user must handle
that.

10.5.4 Adding tags

A new tag can now be added to root and look at the generated XML using
the method dumps():

>>> root.xml.create("foo", cdata="bar")
>>> root.dumps()
'<xml><tags><tag>foo</tag></tags><foo>bar</foo></xml>'
>>>

10.5.5 Renaming tags

If needed the tag can be renamed:

>>> root.xml.foo.rename("bar", "bar")
>>> root.dumps()
'<xml><tags><tag>foo</tag></tags><bar>bar</bar></xml>'
>>>

10.5.6 Removing tags

And remove the tag:

>>> root.xml.delete("bar")
>>> root.dumps()
'<xml><tags><tag>foo</tag></tags></xml>'
>>>

10.5.7 Altering CDATA

CDATA can be altered:

>>> root.xml.tags.tag
foo
>>> root.xml.tags.tag.cdata = "baz"
>>> root.xml.tags.tag
baz
>>> root.dumps()
'<xml><tags><tag>baz</tag></tags></xml>'
>>>

10.5.8 Iterate objects

We can also iterate over objects using tags:

>>> from clixon.parser import parse_string
>>>
>>> xmlstr = "<xml><tags><tag>foo</tag><tag>bar</tag><tag>baz</tag></tags></xml>"
>>> root = parse_string(xmlstr)
>>>
>>> for tag in root.xml.tags.tag:
... print(tag)
...
foo
bar
baz
>>>
>>> xmlstr = "<xml><tags><tag>foo</tag></tags></xml>"
>>> root = parse_string(xmlstr)
>>>
>>> for tag in root.xml.tags.tag:
... print(tag)
...
foo

As seen above, there is a an XML string with a list of tags that can be iterated.

10.5.9 Adding objects

Objects can also be added to the tree:

>>> root.dumps()
'<xml foo="bar" baz="baz"><tags><foo-bar>foo</foo-bar></tags></xml>'
>>> new_tag = Element("new-tag")
>>> new_tag.create("new-tag")
>>> root.xml.tags.add(new_tag)
>>> root.dumps()
'<xml foo="bar" baz="baz"><tags><foo-bar>foo</foo-bar><new-tag><new-tag/></new-tag></tags></xml>'
>>>

The method add() adds the object to the tree and. The object must be
an Element object.

Index

 nav.xhtml

 Table of Contents

 		
 Clixon controller documentation

 		
 1 Overview

 		
 1.1 Goals

 		
 1.2 Architecture

 		
 1.3 APIs

 		
 2 Installation

 		
 2.1 Packages

 		
 2.2 Source

 		
 2.3 Building

 		
 2.3.1 Cligen

 		
 2.3.2 Clixon

 		
 2.3.3 Python API

 		
 2.3.4 Controller

 		
 2.4 Configure options

 		
 2.5 Python install

 		
 3 Quick start

 		
 4 Configuration

 		
 4.1 Example

 		
 5 CLI

 		
 5.1 General

 		
 5.1.1 Version

 		
 5.2 Modes

 		
 5.3 Devices

 		
 5.3.1 Local device configuration

 		
 5.3.2 Device profile

 		
 5.3.3 Remote device configuration

 		
 5.3.4 Device naming

 		
 5.3.5 Device state

 		
 5.3.6 (Re)connecting

 		
 5.4 Syncing from devices

 		
 5.4.1 pull

 		
 5.4.2 pull merge

 		
 5.5 Services

 		
 5.5.1 Service process

 		
 5.5.2 Example

 		
 5.5.3 Created objects

 		
 5.6 Editing

 		
 5.6.1 Editing devices

 		
 5.7 Commits

 		
 5.7.1 commit diff

 		
 5.7.2 Commit push

 		
 5.7.3 Limitations

 		
 5.8 Explicit push

 		
 5.9 Templates

 		
 5.9.1 Limitations

 		
 5.9.2 Example

 		
 6 YANG

 		
 6.1 Searching

 		
 6.1.1 Uniqueness

 		
 6.1.2 Search path

 		
 6.1.3 Device YANGs

 		
 6.2 Structure

 		
 6.2.1 Clixon-controller

 		
 6.2.2 Service augment

 		
 6.2.3 Controller-config

 		
 7 Transactions

 		
 7.1 Device connect

 		
 7.2 Config push

 		
 7.2.1 Out-of-sync

 		
 7.2.2 Ignoring fields

 		
 8 Service API

 		
 8.1 Service instance

 		
 8.2 Device config

 		
 8.3 Tags

 		
 8.4 Example python

 		
 8.5 Algorithm

 		
 8.6 Protocol

 		
 8.6.1 Registration

 		
 8.6.2 Notification

 		
 8.6.3 Editing

 		
 8.6.4 Finishing

 		
 8.6.5 Error

 		
 9 Python API

 		
 9.1 Overview

 		
 9.2 Overview

 		
 9.3 Installation

 		
 9.3.1 Prerequisites

 		
 9.3.2 Installation

 		
 9.4 Usage

 		
 9.4.1 Command line options

 		
 9.4.2 Logging and debugging

 		
 9.4.3 Startup

 		
 10 Service development

 		
 10.1 Module installation

 		
 10.2 Modules basics

 		
 10.3 Service attributes

 		
 10.4 Python object tree

 		
 10.5 Object tree API

 		
 10.5.1 Parsing

 		
 10.5.2 Creation

 		
 10.5.3 Attributes

 		
 10.5.4 Adding tags

 		
 10.5.5 Renaming tags

 		
 10.5.6 Removing tags

 		
 10.5.7 Altering CDATA

 		
 10.5.8 Iterate objects

 		
 10.5.9 Adding objects

_images/controller.jpg
User

North-Bound
Interfaces

0.0
Terminal
o Jeminal |
e Gl
i 0.1
https
® Restconf
0.1
[
T
o
ssh/
5 Netconf
0.1
som, Shinp

Controller

1
Python 2pp
PyAPI
Actions| API
Drivers 1
Netcort/SsH
Backend | Meworf/ssH
Netcont/Ss
amLfison vaNG

Datastore

South-Bound
Interfaces

Network
Devices

Clixon

Other

_images/transaction.jpg
. Cll service
diff

User +—————»

Prefixapp

PyaPl

Controller

cu

Backend

[S—

Device 1

Devicen

_static/file.png

_static/Clixon_logga_ikon.png

_static/minus.png

_static/plus.png

